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Abstract  

A Master Equation provides a complete probabilistic description of the dynamics of stochastic 

processes. We give a master equation for a small stochastic process algebra (a subset of CCS with 

interaction rates). We show that it is equivalent to the standard Chemical Master Equation, connect-

ing our process algebra to the stochastic chemistry of unary and binary reactions. 

1  Introduction 

The purpose of this paper is to establish a basic but precise connection between two well-known pres-

entations of stochastic systems: by chemical reactions and by process algebra. After Regev and Shapi-

ro’s seminal proposal [11][12][13] to use stochastic process algebra [6][7][10] to represent biochemical 

systems, it has become common to translate biochemical pathways, given as sets of chemical reactions, 

into process algebra. A discussion of the advantages of that approach is beyond the scope of this pa-

per, but it is related to the effort to obtain compositional and scalable representations of large biologi-

cal systems, such as the ones found in systems biology [9]. Other discrete and stochastic frameworks 

have been used for the same purpose.  

In view of the growing interest, formal connections between chemistry, differential equations, 

and various process algebras are now being established [1][2][3]. Here we provide a connection at the 

level of the stochastic interpretation of chemistry. The chemical master equation (CME) is a probabilistic 

description of the dynamics of chemical reactions over the discrete state space of molecule counts. It 

describes a continuous-time Markov chain, and it can be derived from the general Chapman-

Kolmogorov equation for Markov chains [14], but it is defined directly over the structure of the chemi-

cal reactions. We give a related process algebra master equation (PME) directly over the structure of a 

small stochastic process algebra, again arising from the fact that the underlying dynamic system is a 

Markov chain, and the underlying state space is a process count. We can say that the CME is a seman-

tics of chemical reactions, and the PME is therefore a corresponding process algebra semantics. 

Our simplifying assumptions about stochastic chemistry are common ones. Individual molecules 

may spontaneously degrade into other molecules, at a certain rate; these are unary reactions. Pairs of 

molecules may collide and produce other molecules, at a certain rate; these are binary reactions. Binary 

reactions between molecules of the same chemical species are called homeo (binary) reactions, and oth-

erwise hetero (binary) reactions. We can ignore reactions between three or more molecules, because of 

the unlikelihood, under normal biological conditions, of finding three or more of them at the same 

time in the same place, and with the right energy and orientation to produce a coordinated reaction 

(“Genuinely trimolecular reactions do not physically occur in dilute fluids with any appreciable fre-

quency. Apparently trimolecular reactions in a fluid are usually the combined result of two bimolecular 

reactions and one monomolecular reaction, and involve an additional short-lived species.” [5]). Reac-

tions are assumed to occur with time-independent base rates, in constant volume, at constant tempera-

ture and pressure, and in a well-stirred solution, so that the probability of two molecules reacting is in-

dependent of their position. All these assumptions can be relaxed at the expense of added complexity. 
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On the other hand, systems are not assumed to be in chemical equilibrium: the dynamics, as opposed 

to the steady state, of such systems is of particular interest in many biological applications. 

Correspondingly, we have simplifying assumptions about the process algebra. Interactions are 

binary (corresponding to collisions) or internal (corresponding to degradations). There is no message 

passing on interaction (nor channel passing), and there is no form of channel hiding. The remaining 

algebraic operators are guarded stochastic choice and parallel composition. The process algebra is 

thus reduced almost to a simple notion of interacting sequential automata, except that these automata 

(representing molecules) must be able to divide dynamically.  

All these simplifying assumptions are in view of obtaining a correspondence between basic che-

mistry and basic process algebra, hopefully to be extended further. More advanced process algebra 

features are useful in modeling biochemistry. For example, the -calculus notions of private channels 

and channels passing can conveniently represent complexation and polymerization. It will be interest-

ing to see what kind of extended correspondences to chemistry can be established. 

The paper is organized as follows. In Section 2 we define the process algebra master equation and 

we solve a simple example. In Section 3 we give the standard chemical master equation. In Section 4 

we show that the chemical master equation and the process algebra master equation coincide under 

appropriate translations between chemistry and processes. Some notational difficulties are due to the 

existence of two established and conflicting sets of notations. We use “+” for chemical composition 

and “|” for process composition: when converting between chemistry and processes these symbols are 

implicitly converted. We use “ ” for stochastic choice in processes. 

2  Processes 

We now introduce our very basic stochastic process algebra. We present it in a normalized form that 

names the elementary reagents involved, and that prevents the construction of complex terms (each 

interaction is always followed by a solution, not by an arbitrary process). 

2.1  A stochastic process algebra 

We describe systems of interacting processes by the following syntax. A system E,P consists of a finite 

set of reagents (named molecules) E, and of a multiset P of initial molecules. 

2.1–1  Definition: System of reagent species and initial solution 
  

  

 E  ::=  0  ⋮  X=M, E  
  

 M  ::=  0  ⋮  .P  M    
 

 P  ::=  0  ⋮  X | P     
 

  ::=  (r)  ⋮  ?n(r)  ⋮  !n(r)      
  

 Sys ::= E,P    

Reagents     (empty, or a reagent X=M and Reagents E) 
 
Molecule     (empty, or an interaction .P and Molecule M) 
 
Solution     (empty, or a variable X and Solution P) 
 
Interaction prefix  (delay, input, output) 
 
System     (Reagents E with initial Solution P) 

  

  

 

E is a finite set of reagents Xi=Mi, for distinct species Xi and for molecules Mi that describe the interaction 

capabilities of the corresponding species; species(E) is the set of the species Xi in E. The possible process 

interactions  are: delay (r) at rate r (where r is a positive real), input ?n(r) on channel n at rate r, and out-

put !n(r) on channel n at rate r (each channel always has the same rate). In the syntax of molecules, each 

interaction  leads to releasing a solution P, describing a multiset of molecules. We use  for choice, | 

for parallel composition, and 0 for the empty reagent, the empty molecule, and the empty solution. Trail-

ing 0’s may be omitted. A system (E,P) is a set of reagents E together with initial conditions, which are a 

solution P. We write E.X for the unique molecule associated to X in E, M.i for the i-th summand i.Pi in 
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molecule M = 1.P1  ...  n.Pn  0, and E.X.i to refer to the i-th summand of molecule E.X. 

A multiset  is a function from a set to integer numbers; negative counts are allowed, although 

they do not represent any legal state. A non-negative multiset  is also written with the notation 

W,Y,Y,Z,Z,Z . If P = Y|W|Z|Z|Z|Y is a Solution, we write P† = W,Y,Y,Z,Z,Z  for the associated 

multiset, with the empty multiset  = 0†. If  and ’ are multisets, then #X = (X) is the count of the X 

elements in , + ’ is multiset addition, and - ’ is multiset subtraction. 

2.1–2  Examples of systems of reagents E 
 

Unary reaction 
 

 X = (r).0     The reagent X that transitions to 0 after a stochastic delay of rate r. 
 

Hetero binary reaction 
 

 X = ?n(r).0 ,    The reagent X that interacts with reagent Y on channel n 

 Y = !n(r).0     at stochastic rate r, and then both reagents transition to 0. 
 

Homeo binary reaction 
 

 X = ?n(r).0  !n(r).0  The reagent X that interacts with another copy of X on channel n 

        at stochastic rate r, and then both copies transition to 0. 
 

 

 

2.2  The master equation 

The master equation for our process algebra describes the conditional probability of a system being in 

state  at time t, given that it was in state 0 at time t0. As we shall see, it has the same form as in che-

mistry. The master equation is the time differential of the conditional probability pr( ,t): it sums the 

probabilities of entering a state minus the probabilities of exiting the state. That is, it sums all possible 

transitions  to the current state , given by the probability of the previous state pr( -v ,t) times the 

transition propensity from the previous state a ( -v ), minus all possible transitions  out of the current 

state , given by the probability of the current state pr( ,t) times the transition propensity a ( ) from 

the current state to some other state. All these concepts are defined below. 

2.2–1  Process algebra master equation 
  

  

 pr( ,t)/ t   =    a ( -v )pr( -v ,t) - a ( )pr( ,t)  
  

  

 

 is the finite set of possible interactions arising from a set of reagents E. Here X.i is an ordered pair 

identifying a molecule summand in E, and E.X.i is a molecule summand as previously defined.  
 

= {{X.i} s.t. E.X.i = (r).Q}  {{X.i, Y.j} s.t. E.X.i = ?n(r).Q and E.Y.j = !n(r).R}      (for any r,n,Q,R) 
 

 species(E) Nat is a reagent state of the system: a multiset of reagent species. A general solution 

of the master equation (as a partial differential equation) is a function of . 

 let  be a random variable whose values are states . Then pr( ,t) = Pr{ (t)=  | (0)= 0} is the condi-

tional probability of the system being in state  at time t given that it was in state 0 at time 0. In a 

system E,P we have 0=P†, with P†#Xi being the initial number of Xi reagents. 

 v  is the state change caused by an interaction . It is obtained from  and E: 

   v  = -X†+Q†      if    = {X.i} s.t. E.X.i = (r).Q 

   v  = -X†-Y†+Q†+R†    if    = {X.i, Y.j} s.t. E.X.i = ?n(r).Q and E.Y.j = !n(r).R 

 a ( ) is the propensity of interaction  in state , defined by a base rate and a state-dependent count: 

   a ( ) = r h ( )  
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 r  is the stochastic rate of interaction ; homeo interactions can happen in 2 symmetric ways: 

   if  = {X.i}  s.t. E.X.i = (r).Q         then r  = r 

   if  = {X.i, Y.j} s.t. X≠Y and E.X.i = ?n(r).Q and E.Y.j = !n(r).R then  r  = r 

   if  = {X.i, X.j} s.t. E.X.i = ?n(r).Q and E.X.j = !n(r).R  then r  = 2r 

 h ( ) is the number of distinct combinations of reagents from state  that can participate in interac-

tion ; it depends on the kind of interaction: 

   if  = {X.i}       then h ( ) = #X  

   if  = {X.i, Y.j} with X≠Y  then  h ( ) = #X #Y  

   if  = {X.i, X.j}     then h ( ) = #X ( #X-1)/2  

 Summarizing the last three points, we can compute the propensities a ( ) as follows: 

   if  = {X.i}  s.t. E.X.i = (r).Q         then a ( ) = r #X 

   if  = {X.i, Y.j} s.t. X≠Y and E.X.i = ?a(r).Q and E.Y.j = !a(r).R then  a ( ) = r #X #Y 

   if  = {X.i, X.j} s.t. E.X.i = ?a(r).Q and E.X.j = !a(r).R   then a ( ) = r #X ( #X-1) 
 

2.2–2  Example 
 

The analytical solution of master equations is in general very hard; see [8] for some solvable classes. 

As a simple example, let us solve the degradation, (r).0, of a single molecule: 
 

 (E,P)   =    ((X = (r).0), X)    
 

The initial state is P† = X . The reachable states are X  and ; therefore, the probability pr( ,t) is ze-

ro for any other state . (N.B.: without this assumption the argument below goes into an infinite re-

gression, and more general techniques such as [8] have to be used.) We have: 
 

 = {{X.1}},  with a single possible interaction  = {X.1} 
 

 0 = X ,  v  = - X ,  r  = r,  X -v  = X,X , -v  = X  
 

Let us work out the probability of state X : 
 

 a ( X ) = r h ( X ) = r X #X = r    

 a ( X -v ) = r h ( X -v ) = r X,X #X = 2r 

dpr( X ,t)/dt  =   a ( X -v )pr( X -v ,t) - a ( X )pr( X ,t)  =  -r pr( X ,t) 
 

The solution of that differential equation is an exponential function pr( X ,t) = Ce-rt. Since pr( X ,0) = 

1, we have Ce-r0 = 1, that is C = 1; hence: 
 

 pr( X ,t) = e-rt  
 

Let us now work out the probability of state : 
 

 a ( ) = r h ( ) = r #X = 0      

 a ( -v ) = r h ( -v ) = r X #X = r 

dpr( ,t)/dt   =    a ( -v )pr( -v ,t) - a ( )pr( ,t)  =  r pr( X ,t)  =  re-rt      
 

By integrating  re-rtdt we obtain the following. Note that pr( X ,t) + pr( ,t) = 1, as expected. 
 

 pr( ,t) = 1-e-rt.  
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3  Chemistry 

We now give the Chemical Master Equation for systems of chemical reactions, from [14] (which more 

generally treats reactions of any molecularity, not just unary/binary). Let M be the number of chemical 

reactions C, and N be the number of species X. Let  = NAV where NA is Avogadro’s number, and V is 

the volume of the solution (assumed constant). The system of chemical reactions C and the vector of 

initial conditions S are written as follows, where sij,rij are the stoichiometric coefficients and kj are the 

reaction rates: 

3.1–1  Definition: System of chemical reactions and initial solution 
  

  

 Cj:   i 1..N sijXi   
kj   i 1..N rijXi     j 1..M  

  

 Si:   the initial number of Xi  molecules   i 1..N   
 

 [Xi]0 = Si/  is the initial concentration of Xi in mol.  

Chemical Reactions 
 
Initial Solution 
 
 

  

  

 

The master equation describes the conditional probability of a chemical system being in state  at time 

t, given that it was in state 0 at time 0: 

3.1–2  Chemical master equation 
  

  

 pr( ,t)/ t   =   j 1..M aj( -vj)pr( -vj,t) - aj( )pr( ,t)  
  

  

 

 {Xi | i 1..N} are the chemical species 

 {Cj | j 1..M} are the chemical reactions 

 {1..N} Nat is a chemical state: a vector of the number of molecules i for each species Xi. There 

is an associated multiset which we also indicate by species Nat such that #Xi = i. 

 let  be a random variable whose values are states . Then, pr( ,t) = Pr{ (t)=  | (0)= 0} is the con-

ditional probability of the system being in state  at time t given that it was in state 0 at time 0. In 

a system C,S, the initial state is 0i =  Si for each species Xi. 

 vj = rj-sj is the vector of changes in the number of molecules caused by reaction j, where r j=(r1j ... 

rNj) and sj=(s1j ... sNj). Again there are associated multisets rj, sj such that rj
#Xi = rij, sj

#Xi = sij, and a 

multiset difference vj = rj-sj. 

 aj( ) is the propensity of reaction j in state , defined as aj( ) = cj hj( ), where: 

 hj( ) = i 1..N( i choose sij) is the number of distinct combinations of molecules from state  that can 

participate in reaction Cj. 

 cj are the stochastic rates, related but not identical to the reaction rates kj (we use also the letters r,s 

for stochastic rates). The general formula connecting the two is the following: 

  cj = (kj / (
Kj-1)) i 1..N(sij!)  for    = NAV   and   Kj = i 1..N(sij)     (Kj is the molecularity of Cj) 

 For the unary/binary reactions of interest to us, we can summarize the last three points as follows: 

  X kj ...   Kj=1  cj = kj   hj( ) = #X   aj( ) = kj
#X 

  X + Y kj ...  Kj=2  cj = kj/   hj( ) = #X #Y  aj( ) = kj
#X #Y/  

  2X kj ...   Kj=2  cj = 2kj/   hj( ) = #X ( #X-1)/2  aj( ) = kj
#X ( #X-1)/  

 

4  Equivalence of master equations 

We translate systems of processes E,P to chemical systems C,S and back, under the restriction that 

chemical reactions have only one or two reagents (but any number of products). On the right side of 

the following tables, we note the conversions between stochastic rates r and mass action rates k from 
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[4][14]. In the case of X+X homeo reactions we emphasize two separate phenomena: on one hand the 

conversion r=2k/ between stochastic and mass action rates, and on the other hand the rate s=r/2 of 

stochastic channels that implement an X+X chemical interaction (resulting in s=k/ ). Chemical reac-

tions in a set of reactions C are assumed to be uniquely tagged by tags “n” out of an arbitrary index 

set; these are used (or taken to be in bijection with) channel names in translation 4.1–1. The notation 

 of P is the choice-composition of one P for each element of the set satisfying the predicate ; suita-

ble quantifications relating a P and its element are omitted. Recall that P can represent an arbitrary 

number of (or no) chemical products, while X and Y represent individual chemical species. Chemical 

“+” and process “|” are implicitly converted into each other. 

4.1–1  From chemical systems C,S to process systems Pi (C,S) 
  

  

 Pi (C)  = {(X =   ((n: X k P) C) of ( (r).P)            with r=k

        ((n: X+Y k P) C and Y≠X) of (?n(r).P)         with r=k/

        ((n: Y+X k P) C and Y≠X) of (!n(r).0)          with r=k/  

        ((n: X+X k P) C) of (?n(r/2).P !n(r/2).0) )        with r=2k/  

     s.t. X is a species in C} 
 

 Pi (C,S) = E,P where E=Pi (C) and P†#Xi = Si for all species Xi

 

  

  

 

4.1–2  From process systems E,P to chemical systems Ch (E,P) 
  

  

 Ch (E)  = 

  {({X.i}: X k P) s.t. E.X.i = (r).P}               with k=r 

  {({X.i,Y.j}: X + Y k P + Q)  s.t. X≠Y and E.X.i = ?n(r).P and E.Y.j = !n(r).Q}         with k=r  

  {({X.i,X.j}: X + X 2k P + Q)  s.t. E.X.i = ?n(r).P and E.X.j = !n(r).Q}        with k=r /2 
 

 Ch (E,P) = C,S where C=Ch (E) and Si
 = P†#Xi for all species Xi 

 

  

  

  

Reactions in Ch (E) are uniquely tagged by {X.i} (a singleton containing an ordered pair of a species 

and an integer) or by {X.i,Y.j} (a set containing two ordered pairs). Fact: there is a bijection between the 

tags of Ch (Pi (C)) and those of C such that the corresponding reactions are equal. That is, Ch (Pi (C)) = 

C up to tags. E.g., if (n: X k P) C then Pi (C).X.i = (k).P for some i, and ({X.i}: X k P) Ch (Pi (C)), 

with the bijection relating n to {X.i}. 

4.1–3  Example 
 

As an example, and in particular an example of homeo reactions, consider the process system 

with one reagent X and two initial molecules:  
 

(E,P) = (X = ?n(r).X !n(r).0, X|X).  
 

The corresponding chemical system is  
 

Ch (E,P) = ({X.1,X.2}: X + X r  X, 2 ).  
 

The process master equation for (E,P), expanding the definitions from Section 2 for  {X.1,X.2}  is: 
 

pr( ,t)/ t  =  (r ( #X+1) #X) pr( + X ,t) - (r #X ( #X-1)) pr( ,t) 
 

The chemical master equation for Ch (E,P) from Section 3 for j 1..1 and state vector  = 1  is: 
 

pr( ,t)/ t  =  (r ( 1+1) 1) pr( 1+1 ,t) - (r 1 ( 1-1)) pr( ,t) 
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Therefore the two equations are identical if we identify (as we do) the molecule count vector  with 

the multiset  = X,...,X  such that #X = 1. 
 

 

 

We now show that, in general, the chemical master equation and the process master equation are 

identical in the same sense under these translations. 

4.1–4  Theorem 

The Process Master Equation of E,P is the same as the Chemical Master Equation of Ch (E,P). 

Proof 

Take a set of reagents E, and consider Ch (E); those chemical reactions are indexed by the set: 

= {{X.i} s.t. E.X.i = (r).Q}  {{X.i, Y.j} s.t. E.X.i = ?a(r).Q and E.Y.j = !a(r).R} 

Therefore, we write the chemical master equation for Ch (E) using as the index set: 

  pr( ,t)/ t   =    a ( -v )pr( -v ,t) - a ( )pr( ,t) 

 The process algebra master equation for E is also a sum indexed by : 

pr( ,t)/ t   =    a ( -v )pr( -v ,t) - a ( )pr( ,t) 

We show that the corresponding elements of the summations are identical expressions in the respec-

tive state variables  vs.  (we use different letters for the state variables just to disambiguate similar 

expressions from the two master equations). We have three cases: 
 

(1) ={X.i}. Then X k P Ch (E) and E.X.i = (r).P with k=r. Hence: 

 (CME) a ( ) = k #X   (PME) a ( ) = r #X = k #X 

  v  = r -s  = -X†+P†   v  = -X†+P† 

 

(2)  = {X.i,Y.j} with X≠Y. Then X + Y k P + Q Ch (E) and E.X.i = ?n(r).P and E.Y.j = !n(r).Q with k=r . 

Hence: 

 (CME) a ( ) = k #X #Y/   (PME) a ( ) = r #X #Y = k #X #Y/  

  v  = r -s  = -X†-Y†+P†+Q†   v  = -X†-Y†+P†+Q† 

 

(3) ={X.i,X.j}. Then X + X 2k P + Q Ch (E) and E.X.i = ?n(r).P and E.X.j = !n(r).Q with k=r /2. Hence: 

 (CME) a ( ) = (2k) #X ( #X-1)/   (PME) a ( ) = r #X ( #X-1) = 2k #X ( #X-1)/  

  v  = r -s  = -X†-X†+P†+Q†   v  = -X†-X†+P†+Q† 

 

Moreover, the initial conditions of Ch (E,P) are S such that Si
 = P†#Xi for all Xi. Hence, the initial condi-

tions of the CME are 0i =  Si  = P†#Xi  = 0
#Xi, which are the  initial conditions of the PME. Therefore the 

two master equations are formally identical. □ 
 

4.1–5  Theorem 

The Chemical Master Equation of C,S is the same as the Process Master Equation of Pi (C,S). 

Proof 

We know from Theorem 4.1–4 that the PME of E,P is the same as the CME of Ch (E,P). Hence, for any 

chemical system C,S resulting in a process system Pi (C,S), we have that that the PME of Pi (C,S) is the 

same as the CME of Ch (Pi (C,S)). Moreover, Ch (Pi (C)) = C up to reaction labels (which are in bijec-

tion), and the initial conditions of Ch (Pi (C,S)) are S. Hence the CME of Ch (Pi (C,S)) is the same as the 

CME of C,S. Therefore, the PME of Pi (C,S) is the same as the CME of C,S. □ 
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